Photocatalytic challenge of carbon dioxide conversion into fuels supported by spectroscopy
Hongwei Zhang, Masaya Miyano, Shogo Kawamura, Magda C. Puscasu, Gabriela Carja, and Yasuo Izumi
1 Department of Chemistry, Graduate School of Science, Chiba University, Yayoi 1-33, Inage-ku, Chiba 263-8522, Japan
2 Department of Chemical Engineering, Faculty of Chemical Engineering and Environmental Protection, Technical University “Gh. Asachi” of Iasi, Bd. Mangeron No. 71, Iasi 700554, Romania

Photocatalytic conversion of CO₂ into fuels explores a route to carbon-neutral fuels, avoiding the net increase in atmospheric CO₂ concentrations associated with fossil-derived alternatives.1 Intensive studies have been reported for the CO₂ photoconversion, however, the development of good catalyst, the optimization of reaction conditions, and the understanding of efficient photocatalytic mechanism are still required for the future applications.2

As a new type of photocatalysts for the CO₂ photoconversion, we previously investigated layered double hydroxides (LDHs), typically comprising Zn, Cu, and Ga/Al to form methanol.3 The doping of Ag nanoparticles on/in Zn₃Ga LDH was effective to enhance the selectivity to methanol (54 mol%) under the irradiation of UV–visible light and also the photoformation rates of CO and methanol under visible light only while Au doping was ineffective.4 The reason was explained based on the excitation of Ag/Au nanoparticles by visible light and that of LDH by UV light (Figure 1). Due to the level difference of conduction band of LDH and hot electrons at Ag/Au nanoparticles, effective electron flow finally to CO₂-derived species was enabled from Ag to Zn₃Ga LDH as monitored by X-ray absorption fine structure (XAFS) and UV–visible spectroscopy.

Pretreatment and photocatalytic reaction conditions were investigated for Zn₃₋ₓCuₓGa LDHs (x = 0, 1.5). If the catalyst was preheated at 423 K and protected in argon, total formation rates of methanol and methane increased to 2.7 μmol h⁻¹ g⁻¹ at 0.40 MPa of CO₂ and H₂ gas due to the liberation of interlayer reaction space of LDH by removing one third of interlayer water molecules as monitored by XAFS.5 At the lecture, related recent progresses are also discussed.

References
Curriculum Vitae

Name: Yasuo Izumi
Date of birth: January 4, 1965
Place of birth: Nakano-ku, Tokyo

<table>
<thead>
<tr>
<th>Fields of study</th>
<th>Catalysis</th>
<th>Environmental Chemistry</th>
<th>X-ray Spectroscopy</th>
</tr>
</thead>
</table>

Education & Jobs

<table>
<thead>
<tr>
<th>Date</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec 1992</td>
<td>Research associate, Department of Environmental Chemistry and Engineering, Interdisciplinary Graduate School of Science & Engineering, Tokyo Institute of Technology</td>
</tr>
<tr>
<td>Feb 1993</td>
<td>Doctor of Science, the University of Tokyo, Active Structures of Supported Metal Cluster Catalysts and Multimetallic Reaction Mechanisms</td>
</tr>
<tr>
<td>Jun 1996</td>
<td>Monbusho (MEXT) Research Fellow, the School of Chemistry, Stanford University (until May 1997)</td>
</tr>
<tr>
<td>Apr 1998</td>
<td>Lecturer, Department of Environmental Chemistry and Engineering, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology</td>
</tr>
<tr>
<td>July 2007</td>
<td>Associate Professor, Department of Chemistry, Graduate School of Science, Chiba University</td>
</tr>
</tbody>
</table>

Representative papers

